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SUMMARY

An Office of Naval Research (ONR) project at the Behavioral
Engineering Laboratory (BEL) of Now Mexico State University has led
to the development of a horizontal display for all-weather vertical
and translational flight in vertical takeoff and landing (VTOL)
aircraft (Roscoe, Hull, Simon, and Corl, 1981; Roscoe, 1982; Roscoe,
Tatro, and Trujillo, 1984; Tatro, Corl, and Roscoe, 1983). This
HOVERING display provides the pilot with information critical in
taking advantage of the VTOL's inherent ability to fly missions
totally beyond the capabilities of fixed-wing airplanes.

Before attempti:g to make the HOVERING display operational, the
eritical elements for pilot performance must be experimentally
identified and optimized across various nission scenarios. To
achieve this goal, a holistic experimerital philosophy has been
adopted by BEL whereby as many potentially critical real-world
variables as possible are experimentally tested to evaluate their
absolute contributions to the total variance in system performance.
To the extent the goal of a holistic investigation is achieved, the
potential for biased data will be reduced to a minimum and

predictability to real-world situations will be achieved (Simon,
1977).

This approach is not without precedent, with problems in
research, development, and manufacturing frequently necessitating the
scereening of multiple variables to identify the critical factors
{Blodgett, 1957; Cragle, Myers, Waugh, Hunter, and Anderson, 1955;
Day, 1949; Davies and Hay, 1950; Wilburn, 1963). To date, however,
human factors investigators have been slower to adopt this philosophy
along with its numerous benefits, depending instead on traditional
factorial analysis of variance methods. Among notable examples,
however, a multifactor study was conducted to identify those display
dynamic characteristics critical to pilot performance with the
HOVERING display (Tatro et al., 1983; Tatro and Roscoe, 1985),

Tatro and his associates screened eight potentially critical
factors in a 30-second standard instrument departure (SID) procedure.
Pilot performance was evaluated in terms of crosscourse, alongcourse,
and vertical tracking error with magnification factor (MF), control
gain (CG), control order (CO0), altitude control gain reduction factor
(GR), tracking mode (TM), flight-path prediction time (PT),
prediction order (P0O), and initial position error (IP) as independent
experimental variables, CO and PT accounted for 45 percent of the
crosscourse tracking variance. For alongcourse tracking, MF, CO, CG,
and TM accounted for 54 percent of the error variance. And finally,
Co, PT, and TM along with various interactions accounted for 60
percent of the variance in altitude tracking.

Thus, five factors (CG, CO, MF, PT, and TM) accointed for most of
the performance variance., Once the most critical fac.ors have been
identified, the optimization process can start, the end product of
which is a multiple regression model, or set of models for the



various dependent variables in different flight scenarios. Such a
model indicates not only where optimum perforumance occurs but also how
performance deterioratas with departures from optimum. In the

present study, this model optimization process was carried out in the
following way. The first step was to settle on a general display and
control system configuration in which the numerical values of the
independent variables had not been fixed.

For the HOVERING display, the functior can be expressed as
P = f(CG, CO, MF, PT, TM)

where P is an index of pilot performance as a function of the five
previously identified eritical factors. This function is then
minimized (tracking error near null) by a computational search for
the optimum variable levels. Before evaluating any relationsnip, an
experimental strategy must be employed that will economically and
holistically estimate pilot performance. Only after the function is
empirically derived can classical optimization techniques be used to
evaluate the function.

This has been accomplished through the use of Response Surface
Methodology (RSM) techniques to develop a multiple-regression model
of VTOL pilot performance for each of three flight tasks, or
scenarios, composed of different combinations of representative
vertical and translational flight maneuvers. Once empirical
models were estimated, the functions could be evaluated using
classical optimization techniques such as canonical analysis,
computational searches, and graphical analysis to obtain the optimum
operating conditions for each of the eritical factors.

INTRODUCTION
Background

A conceptual analysis and review of instrument flight problems
in piloting VTOL aircraft, including helicopters, preceded the
development of a generic VIOL simulation and the initiation of an
experimental investigation of critical design variables in forward-~
and sideward-locking vertical situation displays and downward-looking
horizontal situation displays (Figure 1). The vertical displays
are large, flat plasma screens on which computer-animated contact
analog symbology is presented in real time, and in the case ¢f the
downward~looking display, altitude and vertical rate information are
effectively integrated with horizontal positions and rates to achieve
accuracy and stability of vertical and transitional flight control.

In the BEL MicroGraphic VTOL Simulator, alongcourse and
crosscourse translational rates and/or accelerations (depending on
the mode in effect) are controlled by a three-axis, spring-ceaterad
control stick mounted on the right-hand arm rest (see Figure 1).
Alongecourse tracking is controlled by fore and aft stick displacement
from a center detent, and crosscourse tracking by left and right
stick displacement. Rotating (twisting) the stick about its vertical
axis controls the vehicle's yaw (crab) angle relative to the
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horizontal velocity vector. Vertical flight is regulated by a
vertical speed control (VSC) operated by the pilot's left hand. The
vertical speed control is spring-centered, viscously damped, and is
operated by displacing the stick upward to ascend and downward to
descend, similar to a collective control in a helicopte. .

The vehicle's heading in the horizontal plane is displayed by a
rotating compass rose that responds to both ¢rosscourse control
inputs and weather-vaning of the vehicle due to the effects of
relative wind (Figure 2). A turn-rate index line is shown relative
to top-dead-center of the display so that a desired heading can be
captured by matching this index with the desired position on the
rotating compass rose. Crosscourse and alongecourse rates and/or
accelerations are displayed by a position predictor. For vertical
flight control, the information provided by the HOVERING display
includes a present altitude indicator, imminent altitude predictors,

desired altitude goal bars, and both desired and actual vertical rate
indicators (Figure 3). ‘

Compass Rose

Turn Rate Indicator

\ \\ Cistant Hover Pain:

° Naxt Hover Point

L ]
O/ \ Flight Path Predictor
. Goal Altitude
Goal Altitude

Altitude Scale
+ 4000
Altitude Scale
Desired
Vertical Rate-
Field Indicators

(OVR)

instantanecus
Oesired -Position
Vernier

Prasant Altitude

Actuat Instantaneous
Vartical Rate- Aititude
Field Indicstors

\&_’)/

Desired Course Goal Bars
{VRi} Superposed
on UVR

Figure 2. Present configuration of the HOVERING display.

For lateral and longictudinal control, the pilot is presented
with symbology representing a disired flight path, next hover point,
and distant hever point, shown in Figure 4. This presentation allows



the pilot a view of where the aircraft has been and where it's going.
The "big picture" essentially provides a backdrop against which more
precise tracking takes place. The precise translational tracking
symbols consist of a vehicle target cross, a kite-like flight-path
closing-rate predictor, and a sensitive instantaneou: desired position
vernier (magnified) indicator. The pilot's task in trarslatiional
control is to align the vehicle with the vernier target cross

using the closing-rate predictor as a guide for control inputs.

Owtired
Vertical Aate

Fiald Indicators N ’
(OVA]

4000 ' v« 1 ¢ | 14000

Actual
Vortical Rate
Field lndicaton

{(VR1} // \\
// \\
7 ~
Q> 49
\ z
N /
OVR Superpoted on VRI Alctitude
Predictor
A

Present
Altitude
Indicacor

¢ 4000

Initentanesous
Altitude Goal Bacs

Figure 3. Vertical flight information provided by the HOVERING
display.
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lnstantaneous
Detired Position
Vecniar

Distaat Hover Paint

Next Hover Point

Desired Coursa

Figure 4, The big picture and the precise tracking symbols in
the HOVERING display.

The present altitude indicator i3 an octagonal box that dilates
as altitude increases and constricts as altitude decreases, as shown
in Figure 3. Altitude (size of the octagonal box) is read against a
fixed scale emanating from the center of the display left and right
to the momentary limits of the scale at the display's outer edge.
The scale limits automatically change by a ratio of 4 to 1 as the
simulated aireraft ascends through the momentary limits and as it
decends within the limits of the next larger scale, as depicted in
Figure 5. Altitude goal bars {(AGBs) provide an indicatiocn of
instantaneous desired altitude. The pilot's task is to keep the
cctagonal box aligned within the altitude goal bars. The altitude
goal bars and the octago=al altimeter move independently; hence,
altitude control reduces to a basic pursuit tracking task.
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Figure 5. Example of altitude scale changes in the HOVERING
dieplay.

Desired vertical rate-field indicators (DVRs) consist of four
sets of bars that flow outward to display desired rate cf climb and
inward for desired rate of descen%t. The actual vertical rate
indicators (VRIs) consist of four sets of Lars superposed on, but
perpendicular to, the DVRs. The flow of both the desired and actual
vertical rate indicators matches that of the octagonal altimeter;
outward flow indicates a desired or actual rate of c¢limb, and inward
movement indicates desircd or actual rate of deseent.
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Exnerimental Variables

Those five variables found to be critical in the screening
study had a direct influence on the usefulness of the aforementioned
aspects of the HOVERING display. The magnification factor of the
vernier deviation indicator had the largest single effect,
accounting tor 25 percent ¢f the variance in both alongcourse and
crosscourse tracking. As magnification inereased, tracking Lecame
more precise. However, as magnification inereases, a tradeoff in the
acceptable control/display ratio ocecurs. At higher magnifications,
control gain must be reduced to maintain an acceptable ratio. Thus
an optimum combination between control gain and magnification must
be found for the various flight tasks.

Control gain is of major importance in the optimization
procedure. High contrel gain results in faster target acquisition
but less time on target. Low control gain accommodates the fine
adjustments needed for keeping on target but causes slower target
acquisition. Thus a compromise is needed between the two extremes.
In a flight task such as an intercept approach, high gain would be
preferable; while in a sea-rescue mission, low gain would help the
pilot. Thus tne optimum sensitivity of control needs to be a
compromise between the high gain required to reduce acquisition
time and the low gain required for accurate fine adjustments
(Poulton, 1974), yet at the same time being compatible with the
magnification factor in use.

Control order proved to be impertant in the screening study for
all three dimensions, with second-or !¢r ccntrol being most
effective. In the literature on tracking experiments involving
control order, som2s experiments show first-order control superior,
while other studies indicate second-order control to be easier
(Poulton, 1974). These contradictory results are most likely
task-related, and such being the case, control order needed Lo be
optimized across various flight scenarios.

Prediction time was also found to be a significant contributor
to the observed performance variance. Optimum prediction time has
been found to vary from task to task (Roscoe, 1980; Tatro et al.,
1983). However, according to Beringer, Williges, and Roscoe (1975),
short prediction times produce a tendency for overcontrolling the
vehicle; the longer the prediction time, the smoother and slower
the control inputs. Hence, short prediction times were better with
large err~+~s, and long prediction times with small errors. Thus
prediction time needed to be evaluated across mission scenarios,
especially with the addition of an altitude predictor since the
completion of the screening phase.

The last eritical variable in the screening study was tracking
mode. Pursuit tracking has consistently been shown to be superior
to compensatory tracking; however, practical limitations have
dictated the use of compensatory presentations. In pursuit tracking,
independent indices of both target and vehicle movement are presented



against a common fixed frame of reference, whereas in compensatory
tracking only the relative position of target to vehicle (or vice
versa) is displayed, thereby resulting in a single index of error.
Based on the work of Bauerschmidt and Roscoe (1960, the HOVERING
display has a feature that transforms the compensatory tracking
presentation into what has been termed a quasi-pursuit display.

In the quasi-pursuit tracking presentation, the position error
is allotted to both the target and vehicle (instead of the standard
single-error compensato~y configuration), creating an appearance of
independent movement. In the screening study, a target-referenced
compensatory (TRC) presentation, a vehicle-referenced compensatory
(VRC) presentation, and a 50-percent-TRC/50-percent-VRC (quasi-
pursuit) presentation were compared. The 50/50 mode resulted in
significant improvement in translational tracking. Since the
fraction of error allotted to either the target or vehicle can be
inanipulated, and because this display innovation has not been
systematically investigated, tracking mode was included as an
experimental variable.

Pesponse Surface Methodology

In the optimization of a given system, an investigator's prime
concern is the establishment of a quantitative relationship between
human performance and a set of system parameters. Once the
quantitative relationship has been established, the irvestigator is
able to determine the level of performance expected for given levels
of the system parameters and, conversely, to determine the levels of
the system parameters required to maintain performance at a
prescribed level. The estimated function of system parameter levels
to levels of performance is known as the response surface.

The procedures used to investigate response surfaces were
orignally developed by Box and Wilson (1951) for use in chemical
research to determine the optimum combination of variables to
produce the maximum yield of a chemical process, Response surface
methodology (RSM) has since been shown to be practica: in
psychological research, especially in studies pertaining to human
performance (Beringer, 1979; Clark, 1976; Clark and Williges, 1972,
1973: Meyer, 1963; Randle, Roscoe, and Petitt, 1980; Roscoe and
Eisele, 1980; Scanlan, 1975a, 1975b; Scanlan and Roscoe, 1980;
Simon, 1970; Williges and Simon, 1971).

Among the numerous henefits from the use of RSM, the moat
notable is its sampling economy (Simon, 1970). Response surface
designs are planned to minimize redundancy and to limit data
collection to that really necessary {(Simon, 1973). Tuhis is
accomplished by collecting the fewest data sufficient to estimate the
ceoefficients of the lowesi-degree polynomial that yields an
acceptable fit. For most behavioral response surfaces, a second-
degree palvnomial seems to be adequate (Clark, 1976). Since results
from the screening study indicated a bow in the data. this assumption
would seem to be appropriate here.



In the current experiment with five factors, following
traditional psychological methodology, a 35 factorial design with a
resulting 243 data points would be required to estimate the second-
order polynomial. Response surface designs, on the other hand, are
built on the theoretical assumption that a minimum of N data
collection points are required to write a polynomial of N
coefficients (Simon, 1970). Thus with five factors, a minimum of 21
observations are required to estimate a second-order function, an
enormous saving in time, cost, and resources. The loss of
information in the response surface design, due to fewer observations,
is limited to those interactions involving more than two factors that
generally are negligible (Box and Hunter, 1957).

As an alternative to the 3K factorial designs, Box and Wilson
(1951) have devised a class of composite designs, of which the most
pertinent to human factors research is the central-composite
design (CCD). The central-composite design is a 2 factorial or
fractional factorial {K =2 5) augmented by additional strategic points
to allow estimation of the second-order coefficients. For the sake
of simplicity, the building of a central-composite design in three
variables will serve as an example.

If instead c¢f the five factors to be evaluated, we were to
investigate just magnification factor, prediction time, and control
order, a full 33-factorial experiment consisting of 27 data points
would normally be conducted. As an alternative, a 23-factorial
experiment, depicted as a design matrix in Table 1, could be
aug:.ented with seven additional data points, shown in Table 2, to
construct the central-composite design. The result, illustrated
in Figure 6, is a cube consisting of the factorial portion of the
design, a center point, and six axial or star points.

TABLE 1
Coded-Value Coordinates of Data
Points in a Full 23 Factorial

Xl XZ X3
+1 +1 +1
-1 +1 +1
+1 -1 +1
-1 -1 +1
+1 +1 -1
-1 +1 -1

+1 -1 -1
-1 -1 -1

10
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Figure 6. Three-factor, central-composite design
(Clark and Williges, 1972).
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TABLE 2
Coded-Value Coordinates of Data
Points to Augment the 23 Factorial

Xy X, !
- 0 4]
+ex, (0] 4]
0 -o< 0
0 +oc 0
0 0 - K
0 g +0¢

The formula for the number of data points in a basic CCD is:

. 2K+ (2% « 1), for RS Y
and K-1
2 + (2%K + 1), for K& 5,

Each factor is now sampled at five levels with an enormous reduction
in data collection. This saving is magnified as the number of
factors increases, as shown in Table 3. For studies involving five
or more factors, a fractional factorial sampling ia used instead of
the full factorial, thereby yielding even more economy.

TABLE 3
Comparison of the Number of Data Points Required Between a
Three-Level Full Factorial and a Basic Central-Composite Design

Number of Data Points

Number of

“Factors, Full Basic
K Factorial ccb Saving
2 9 13 -4
3 27 20 7
y 81 31 50
5 243 32 21
6 729 53% 676
7 2187 92% 2095

CCD designs marked with * indicate a fracticnal factorial is used.



A second-order polynomial can now be estimatec. If repeated
observacions are taken at the center point, as illustrated in Figure
7, an estimate of experimental ercor variance can be calculated to
test the significance of the derived polynomial and eacn of its
components. The final step in the construction of a central
composite design is the selection ofef to establish the positions of
the axial star points.

The value of ot should be selected with the design property of
rotatability. A design js said to be rotatable when the variance cf
the estimated response ) is a funation of the distance from the
center of the design, regardless of the direction (Box and Hunter,
1957). Thus the information obtained from two points equidistant
from center Will be equal. This feature i3 highly desirable because,
until the response surface is evaluated, the importance of each point
in the experimental design is unknown. The values of o< that result
in a rotatable CCD are given in Table 4, )

* e

TABLE 4
Rotatable, Second-Order Central-Composite Design Statisties

Number of Observations in:

Number of
Factors, .gf Factorial 2K Star Center Total = Value for
K Portion Portion Points Design Rotatability
2 y y 5 13 1.414
3 8 6 5 20 1.682
y 16 8 7T 31 2.000
5 16 (1/2 replicate) 10 5 32 2.000
6 32 (1/2 replicate) 12 9 53 2.378
7 64 (1/2 replicate) 14 14 92 2,828

A second important feature of the CCD is the number of repeated
center-point observations. This number is selected to obtain uniform
or near-uniform precision. Uniformity refers to the idea that the
quality of information (the reciprocal of the variance) at any point
from the center of the design to the vertices of the hypercube
portion of the experimental space should be eqral (Simon, 1970). The
number of center points has a direct effect on the information
profile of the experiment. The appropriate number of center points
to obtain near-uniform precision is given in Table 4. For a more
comphrehensive review of uniform precision ana rotatability in the
CCD, see Box and Wilson (1951) and Box and Hunter (1357).

Te obtain the maximum benefits from the CCD, independent and
dgpendent variables must be continuous, quantitative factors. 1In this
way a polynomial model can be derived through the use of least-
squares techniques. Once the regression equaticn has been estimated,

13




an analysis of variance is conducted on the adequacy of the model to
fit the data and the significance of the contributions of the

individual coefficients.

To explore the estimated [unction further,

graphical analyses, canonical reduction, and various optimizational
searches can then be employed.
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METHOD

Mission Scenarios -

Five critical variables affecting pilot performance in three
flight tasks or scenarios were experimentally manipulated., Each -
flight was to be completed in 35 seconds. -

In Scenario 1, subjects were presented with a VIOL takeoff task -
involving precise altitude control with some crosscourse
manuevering. For the altitude profile of the flight, subjects
initially started from a stationary point on an aircraft carrier.
During the first four seconds, the aireraft was to ascend to 15 feet
and fly level for five seconds. During the last 26 seconds of
flight, the aircraft was to ascend rapidly from 15 feet to 400 fect,
holding a constant heading away from the ship.

.o

Scenario 2 involved a terrain-following and landing task calling
for precise control in three dimensions. The altitude subtask
involved a level-descend-level-descend sequence starting at 100 feet,
dipping below 60 feet, and then descending to zeroc feet. In this
sequence the pilot had to negotiate one scale change when descending
through the 60-foot altitude. For the translational subtask, a -
cruise~bank-cruise-bank-cruise sequence was followed, calling for -
precise crosscourse and alongcourse tracking.

L SE

Finall', in Scenario 3, the standard instrument _.parture task
used in the screening study (Tatro et al., 1983) was recvaluated to
confirm or refine the previous results and estimate the quadratic
components of the response surfaces., The task involved a climbing
turn to the right from 400 to 950 feet in altitude and 0 to 35
degrees in heading.

Subjects

Twelve right-handed male Introductory Psychology students were
selected from a larger number who were first pretested on the
HOVERING display in the following manner: Altitude symbology was
turned off, resulting in a two-dimensional translational task. A 35-
second course consisted of a left turn at a rate of 1 degree per
second. Potential subjects flew ten trials, with the average of the
three best consecutive trials serving as a baseline matching score.

Of the 20 potential subjects tested, 12 were selected to form
four stratified groups of three subjects each, respectively matched
to minimize within-group and maximize between-group variances. One
sub ject from each group was then assigned to each of the three
experiments, ore experiment for each of the three sicenarios. This
matehing procedure was designed to reduce bias due to subject
differences in ipnitial tracking and time-sharinz ability.
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Experimental Design

For each of the three rlight scenarios, the same five-factor
central-composite design was used, A Resoclution-V (25-1) fractional
factorial sampling (Simon, 1973) was augmented with axial and center
points to complete the CCD. With Resolution-V, main effects are
confounded with third-order (four-factor) interactions, and first-
order (two-~factor) interactions are confounded with second-order
{three-factor) interactions. Because three-factor and higher
interactions are usually negligible, main effects and first-order
terms are essentially unconfounded. The defining contrast for the
fractional factorial is: I = abede, which is selected to create the
fractional and to identify the aliasing (eonfounding) of the
estimated effects.

The fractional factoirial samples along with the aliases for each
effect are given in Table 5. The value of & chosen tc¢ identify the
axial points in the CCD was 2.0, which results in a rotatable
design. To obtain near-uniform precision in the CCD, six center
points were added to the fractional factorial. Thus, for each of the
optimization experiments, there were 32 distinet observation points,
allowing estimation of second-order regression equations for 2ach
dependent measure for each flight scenario. The total design in
matrix form is given in Table 5.

Variable Levels

One advantage of the CCD is that the data obtained are readily
transt'crmed for ease of interpretation and analysis. FEach of the
five variables (tracking mode, magnification factor, prediction time,
control order, and control gain) were transformed and assigned to
five coded levels (-2, -1, 0, +1, +#2). For the spacing between
levels of control order to be equal in terms of effects, a logrithmic
transformation was deemed appropriate based on the screening study
(Tatro et al., 1983), while %the other four variables were linearly
transformed. The real-world ranges and transformations are provided
in Table 6. Experimental variable real-world levels and their
association with the five-level experimental design are shown in
Table 7.

Performance Measures

There are four dependent measures of pilot performance for each
flight task. As in previous studies, log RMS error was used to
evaluate altitude (vertical), crosscourse (lateral), and alongcourse
(longitudinal) tracking. The log RMS error distribution has been
empirically shown to yield a good approximation of a normal
distribution and homogeneous variances (Tatro et al., 1983) and hence
Justifies the assumptions inpliicit wiith least-sguarcs regression
technigues.




TABLE S
Design Matrix for the Five~Factor Central-Composite Design

b

Condition Variable Effect Alia

A

s
a b c d e
1 - - - - - 1) abede
2 + + + + - abed e
3 - - - + + de abe
y + + o+ - o+ abece d
5 + + - - - ab cde
6 -~ - o+ o+ = cd abe
7 + o+ - + o+ abde ¢
8 - - o+ - o« ce abd
9 + - + - - ac bde
10 -+ - + - bd ace
11 + = o+ o+ 0+ acde b
12 - + - - + be acd
13 - + + - - be ade
14 + - - + - ad bece
15 - + + + + bede a
16 + - - - o+ ae bed
17 0 0 0 0 0 <enter point
18 O 0o o 0 o center point
19 0 0 0 o 0 center point
20 0 0 ¢ 0 0 center point
21 0 0 0 0 0 center point
22 0O 0 ¢ o 90 center point
23 -2 0 0 0 ©° axial point
24 0 -2 0 0O 0 axial point
25 0 0 =2 0 0 axial point
26 0 0 o0 -2 © axial point
27 ¢ 0 o0 o =2 axial point
28 2 0 0 0 o axial point
29 0 2 0 0 O axial point
30 0 0 2 0 0 axial point
3 0 0 0 2 0 axial point
32 0 ¢ 0O 0 2 axial point
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TABLE 6

Real-World Variable Ranges and Tra.sformations

Experimental Variable Range Transformation
Tracking mode (percent VRC) 25 to 75 (X-50)/12.5
Magnification factor 50 to 150 {(X-100)/25%
Prediction time (seq) 0.5 to 2.5 (X=1.5)/0.5
Control order 1.2 to 2.C (X-1.6)/0.2
Control gain (unitless ratios)
longitudinal (1st order) -6000 to -10000 {X+8000)/-1000
longitudinal (2nd vrder) -100 to -25C (X+175)/-37.5
lateral (ist order) 13000 to 20000 {X-16500)/1750
lateral (2nd order) 600 to 900 {X=750)/75
azimuth (1st order) 0.40 to 1.20 (x-0.8)/0.2
azimuth (2nd order) 0.20 to 0.60 (X-0.4)/0.1
vertical (1st order) -1500 to -2500 (X-1000)/250
vertical (2nd order) ~50 to =120 (X-60)/17.5

TABLE 7
Experimental Variable Levels

Experimental Variable

Variable Levels

(=2) (-1 (0) (+1) {+2)
(a) Tracking mode (percent VCR) 2§ 37.5 50 62.5 75
(b Magnification factor 50 75 100 125 150
{(c) Prediction time (sec) 0.5 1.0 1.5 2.0 2.5
(d) Control order 1.2 1.4 1.6 1.8 2.0
(e) Contrcl gain (unitless ratios)
longitudiual (1st order) -6000 -7000 <8000 ~9000 -=10000
longitudinal (2nd order) -100 -137.5 -175 <212.5 -250
lateral -+ 1st order) 13000 14750 16500 18250 20000
lateral (2nd order) 600 675 750 825 900
azimuth (1st order) 0.40 0.60 0.80 1,00 1.20
azimutk (2nd order) 0.20 0.30 0.40 0.50 0.60
vertical (15t order) -500 =750 ~1000 -1250 -1500
vertical (2nd crder) =25 =U2.5 <60  ~77.5 -35
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The fourth dependent variable consisted of a log composite error
vector score of the form:

log E‘\/Xz + Y2+ 72
N

in which X, Y, and Z are position errors and N is the number of
position error samples taken. This composite score served as an
overall index of display performance, whereas the other three
measures served to isolate effects of the various configurations on
the specific subtasks (altitude, crosscourse, and alongcourse
tracking).

Procedure

For each experiment, subjects flew ninety-six 35-second flight
trials on each of three consecutive days. Each flight was followed
by a 10-second intertrial interval., The first two 72-minute
sessions served as trajining sessions, followed on the third day by a
72-minute testing session. Each subject was tested in a different
(partially counterbalanced) serial sequence as seen in Table 8.

In the within-subject design used in each of the three scenario
experiments, careful attention was given to possible biases that
might result from intraserial transfer effects due to the testing
sequences. The fracticnal factorial sampling used in this design has
been found by Simon (1977) to be orthogounal to intraserial trends in
the first- and second-order effects, thus effectively counter-
balanced.

Traditional counterbalancing, though, has been shown by Poulton
(1974) to be generally ineffective as a way to reduce or eliminate
sequence effects in tracking studies. Thus, t¢ minimize any
remaining possibility of biases as a2 result of asymmetrical
transfer, highly trained subjects were used, and two buffer trials
were floun before the test trial with each system configuration.

An unreported experiment at this laboratory has demonstrated the
effectiveness of tnis procedure.

Analysis of Results

The first step in the estimation of the true functional
relationship between experimental variables and response variables is
a least-~squares multiple-regression analysis. From this analysis,
multiple-regression equations were derived for the various
performance measures and flight scenarios and subsequently used to
determine the true nature of the response surfaces. To evaluate the
adequacy of the multiple-regression models, analyses of variance
were conducted on the models as well as the individual regression
coefficients. These analyses provided information as to the amount
of variance accounted for by each whole model as well as the
contributions of each of the individual experimental factors.
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TABLE 8
Order of Presentation for Each Subject

Order of Conditions

Trials Subjent 1 Subject 2 Subject 3 Subject Y
1 -3 17 (e) 22 (o) 22 (c) 17 (&)
b -6 18 (e) 21 (e) 21 (e) 18 (c)
7-9 1(f) 16 (f) 16 (f) 1 (f)
10 - 12 2 (1) 15 (f) 15 (f) 2 (f)

- 15 3 (f) 4 (f) W (f) 3 (f)

o - 18 4 (fr) 13 (f) 13 (1) 4 (f)
19 - 21 23 (a) 30 (a) 28 (a) 31 (a)

22 - 24 24 (a) 29 (a) 27 {(a) 32 (a)

25 - 27 25 (a) 12 (f) 26 (a) 5 (f)

28 - 30 5 (f) 11 (f) 12 (f) 6 (f)

31 - 33 6 (f) 10 (f) 11 (f) 7 (f)

34 - 36 7 (f) 9 (f) 10 (f) 8 (f)

37 - 39 8 () 25 (a) 9 (f) 29 (a)

40 - u2 26 (a) 24 (a) 32 (a) 30 (a)

43 - 45 27 (a) 23 (a) 31 (a) 19 (e)

u6 - u8 28 (a) 20 (e) 20 (e) 20 (e)

g - 51 19 () 19 (@) 19 (c) 26 (a)

52 - 54 20 (e) 32 (a) 25 (a) 27 (a)

55 - 57 29 (a) 31 (a) 24 (a) 28 (a)

58 -~ 60 30 (a) 8 (f) 23 (a) 9 (f)

61 - 63 9 (f) T (£} 8 (f) 10 (€

64 ~ 66 10 (f) 6 (f) 7 (f) 1M1 (f)

67 - 69 1 (f) 5 () 6 (f) 12 (f)

70 - 72 12 (f) 28 (a) 5 (f) 23 (a)

73 - 75 31 (a) 27 (a) 30 (a) 24 (a)

76 - 78 32 (a) 26 (a) 29 (a) 25 (a)

79 - 81 13 (f) b o(f) 4 (f) 13 (f)

82 ~ 84 W (f) 3 () 3 (f) 14 (f)

85 -~ 87 15 (f) 2 (f) 2 () 15 (f)

88 -~ 90 16 (f) 1 (f) 1 (f) 16 (f)

91 - 93 21 (c) 18 (e) 18 (c) 21 (c)

g4 - 96 22 (¢) 17 (e) 17 (e) 22 (e)

f = factorial point; ¢ = center point; a = axial point




The analyses of the fitted surfaces were further enhanced by
graphically depicting the response surfaces generated by each
experimental factor (linear and quadratic). In this way, regions of
optimum response for each factor could be deduced and used to conduct
further experiments to loccate an area of minimum error precisely.
Because of the complex nature of a surface consisting of five
factors, the graphical representation of individual factor response
surfaces is a gross simplification of the overall surface. To take
into account the many interactions along with the linear and
quadratic effects, multiple-regression equations must be reduced to a
simpler form for interpretation. This reduction is called a
canonical analysis of a fitted surface.

The goal of canonical analysis is to restate the original
multiple-regression equation in an easily interpretable form. A
canonical analysis takes place in four stages. The analysis begins
with a translation of the response surface from the experimental
design orizin (CCD center point) to the stationary point of the
response surface. The stationary or near-stationary point is
determined by taking the K partial derivatives with respect to each
factor ard then scolving the K equations. In the present study, five
equations in five unknowns had to be solved to determine the
stationary point of each response surface.

Upon determination of the stationary point, the reponse function
is transformed into an equation expressed in K new variables (W's),
whose axes correspond to the principal axes of the response surface.
This new equation provides a c¢lear picture of the nature of the
response surface as one moves away from the stationary point. The
new response surface equation is c¢alled the canonical equation. Tha
caunonical equation is determined by finding the characteristic roots
or eigenvalues of the second-order symmetrical matrix, consisting of
the quadratic and linear-by-linear interaction terms of the origiral
multiple-regression model.

With five experimental factors, expansion of the second-order
matrix yields five characteristic roots. These characteristic roots
are arranged in ascending order to determine the coefficieits of the
five new variablez (W's), with thne estimated response at the
stationary point determining the mean of the canonical equation. The
signs and magnitudes of the various coefficients then reveal the
nature of the response surface. Since the response surface is now
expressed in terms of new variables, it becomes beneficial to
ascertain the relationship between the old variables and the new
canonical variables.

This relationship takes the matrix form: W = MZ, where M
represents the 5 X 5 matrix of normalized eigenvectors corresponding
to each characteristic root; Z represents the 5 X 1 matrix of x-
values minus the corresponding stationary point x-valiues; and W
represents the 5 X 1 matrix of W values to be determined. In the
fourth stage of the canonical analysis, the eanoniecal equation and
the x to W transformations are used to find either the values of the
x~variables that result in a given operating condition or those that
result in an optimum operating conditionm.

21



RESULTS

Takeoff Scenario

Each of the four dependent variables (lateral, longitudinal,
vertical, and radial errors) was analyzed separately.

The regression analyses yielded equations that relate the
dependent variables to the second-order combination of the coded
values of the five independent variables. The equations together
with summaries of their associated analyses of variance and graphic
illustrations are presented in the APPENDIX. The illustrations
depict the error values predicted by the regression equations as a
function of each of the significant independent variables when all
other variables are at their center-point values, including pseudo
three-dimensional plots of the significant two-way interactions.

The F-ratios indicate that the overall model is reliable for
each dependent variable, with ﬁz's of Q.44, 0,42, 0.39, and 0.45,
respectively., In addition, tests were made on the individual
coefficients of each regression equation. _For lateral log RMS error,
the significant terms are CO, PTZ, Cco 4, G2 and PTxCG; f%r
longitudinal log RMS error, significant terms are CO, MF PTZ, COZ,
CG2, TMXCG, and PTxXCG; for vertical log RMS error, CO, CO2, PTxCC,
and COxCG were significant; while for radial log RMS error, CO, PT,
€02, TMxCG, and PTxCG reached significance.

The Residual sum-of-squares was partitioned intoc Replications,
Lack-of-Fit, and 3ubjects terms. Replications was used as an
estimate of experimental error for all F-tests. The reliable
Subjects effect for all four dependent variables indicates that the
behavior of at least one of the subjects differed from that of the
others. The existence of a significant Lack-of-Fit term means that
either higher-order models would better approximate the response
surfaces or that an additional factor or factors should be Included
in the models.

The canonical analysis of each fitted surface was then conducted
to describe the nature of the response surfaces more intelligibly.
The stationary point for eac¢h of the four systems is given in Tabhle
9. The cancnical analyses yielded the following four equations that
relate the dependent variables tc five new canonical variables:

log RMSE,lat = 1.17 ~ 0.03W12 + 0.03W22 + 0.03W32 + 0.14W4 2 + 0.23W5 2,

log RMSE,lon = 1,29 - 0,05W12 = 0.02W22 + 0.06W3 2 + 0.08W4 2 + 0.15W5 2,

log AMSE,ver = 1.16 - 0.10W12 - 0,00W22 + 0.03W3 2 + 0,03W4 2+ 0.11W5 2,

log RMSE,rad

1.63 - 0.02W12 4+ 0.01W22 + 0.04W3 2 + 0.10W4 % + 0,14W5 2,

e



TABLE 9
Response Surface Stationary Points for the Takeoff Scenario

log RMSE ™ i oy 0 ol b
Lateral 0.21 0.42 -0.03 0.55 -0.3% 1.17

Longitudinal -D.79 0.39 0.63 -0.48 0.62 1.29
Vertical 0.03 «0.65 0.57 -0,2% 9,01 1,16

Radial -0.07 1.54 1.4 ~0.147 0.94 1.63

As indicated by the signs of the coefficients of the canonical
equations, all four response surfaces are of the saddle-point type.
For lateral and radial log RMS error, moving along the W1 axis
results in decreases in Y, while moving along the W2, W3, Wi, and W5
axes results in increases in Y. For longitudinal and vertical log
RMS error, moving along the W1 and W2 axes results in decreases in Y,
while moving along the W3, Wi, and W5 axes results in increaczs in
Y. The magnitudes of the W coelficients reveal that, for lateral and
radial log RMS error, the surface is attenuated along the W1, W2, and
W3 axes; for longitudinal log RMS error, the surface is attenuated
along the W2 axis; whereas for vertical log RMS error, attenuation
occurs along the W2, W3, and WU axes.

Once the surfaces have been described in terms of the new
canonical variables (W's), the relationship between the old x-
variables and the new W--variables is needed. The four matrix
‘equation transformations are given in Table 10. With the response
surfaces thus descrihed, it becomes possible to locate those values
of the coded independent variables that result in an optimum
operating condition,

For lateral log RMS error, these coded-values are: TM = 0.2, MF
= 0.4, PT = 2,0, CO = 0.5, CG = -0.3, with a predicted error of 1.11
or 12.88 feet. For longitudinal log RMS error, the optimum operating
condition results at the cod-d values: TM = -0.8, MF = 2,0, PT =
2,0, CO = -0.5, CG = 0.6, wich a predicted error of 1.08 or 12.12
feet. For vertical log RMS error, an optimum condition occurs at the
points: T™ = 0.1, MF = 2,0, PT = 2,0, CO = =0.2, CG = 0.0, with a
predicted error of 0.40 or 2.52 feet. Finallv, fer radial error, the
optimum values are: TM = -0.1, MF = 1.5, PT = 1.4, CO = -0.5, C¢ =
0.9, with a predicted error of 1.63 or 42.29 feet.



TABLE 10
X to W Transformation Matrix Equations for the Takeoff Scenario

Lateral
W1 0.27 -~0.01 ~0.89 0.29 0.21 x1 - 0.21
W2 -0.63 0.75 -0.13 0.16 0.08 x2 - Q.42
W2 = =0,44 ~0.30 -0.39 -0.31 -0,.69 x3 + 0.03
Wi 0.00 -0.10 0.18 0.87 -0.U45 xt - 0.55
Ws -0.58 -0.59 0.02 0.20 0.53 x5 + 0,35
Longitudinal
W1 -0.25 0.91 -0.01 -0.27 0.20 x1 + 0,79
W2 0.02 -0.02 0.99 -0.10 0.07 x2 - 0.39
W3 = 0.80 0.38 0.04 0.37 -0.15 x3 - 0.63
Wy 0.07 -0.09 ~0.04 0. 0.94 x4 + 0.u8
“’5 0.)48 -0.17 -0011 ’0083 0022 X5 - 0062
Vertical
W1 -0.15 -0.80 -0.47 0.33 0.07 - x1 - 0.03
W2 0.0 -0.58 0.71 -0.39 -0.08 x2 + 0.65
W3 = 0.33 -0.09 ~0.51 -0.77 -0.05 x3 - 0.57
Wi 0.12 .=0.02 =-0.04 0.15 -0.98 x4 + 0,25
W5 0.90 -0.09 0,13 0.35% 0.17 x5 - 0.01
Radial
W1 -0.59 -0.63 0.35 0.36 0.06 x1 + 0,07
W2 0.30 -0.55% -0.74 0.23 -0.00 x2 - 1.54
W3 = 0.30 -0.53 0.30 ~0.70 -0.21 x3 -~ 1.44
Wi 0.1 0.06 o.M 0.33 -0.93 x + Q.17
W5 0.68 0.08 0.u47 0.46 0.30 x5 - 0.94

Landing Scenario

For the landing scenario, the regression equations, analysis of
variance summaries, and graphic iliustrations are also presented in
the APPENDIX. The F-ratios indicate that the overall model for each
dependent variable was significant with R%'s of 0.38, 0.32, 0.29, and
0.43, respectively. F-tests on the individual coefficients of the
four regressioa aquations indicate that, fsor lateral log RMS error,
MF, CO, ang CO“ were significant; for longitudinal log RMS error, CU,
PT, and CO“ reached significance; significant terms for vertical log
RMS ergor Were PT, CQ, PT, and CO; while for radial log RMS error,
Co, MF7, PT", and CO° were significant.

The partitioned Residual sum-of-squares indicates a reliable
Subjects effect for all four dependent variables, meaning that the
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behavior of at least one subject differed from that of the others.
The significant Lack-of-Fit term for lateral, longitudinal, and
radial log RMS error would irndicate the inclusion of additional terms
is needed in the models, either higher-order terms cr additional
factors. For vertical log RMS error, the model seems to account for
all the variance possible, excluding subject factors.

The stationary point for each of the four response surfaces is
given in Table 11, The nature of the systems around the stationary
poirts is determined by the four canonical equations:

log RMSE,lat = 1.16 - 0.03W12 - 0,02W22 + 0.02W32 + 0.04WL 2 + 0.13W5 2,
log RMSE,lon = 1.34 - 0.05W12 - 0.02W22 + 0,02W32 + 0,04W4 2 + 0.09WS5 2,

log RMSE,ver = 0.96 - 0.02W12 - 0,00W22 + 0.J2W3 2 + 0.03Wk 2 + 0.06W5 2,

log RMSE,rad = 1.40 - 0.04412 - 0.02W22 + 0,02W32 + 0,04W4 2 + 0.11W5 2,

TABLE 11
Response Surface Stationary Points for the Landing Scenario

log RMSE ™ w PT o cg 1
Lateral 0.42 0.66 0.04 -0.39 0.39 1.15
Longitudinal 0.68 0.06 0.21 -0.41 ~0.35 1.34
Ver‘tical 0.06 -0.07 “0151 -1022 '1.89 0096
Radial 0.28 0.15 0.2% ~0.53 0.02 1.40

The signs of the W coefficients of the canonical equations
reveal that all four surfaces are sadule-point type. For all four
response surfaces, moving along the W1 and W2 axes results in
decreases in Y, while moving along the W3, WlH, and W5 axes results in
increases in Y. For lateral and longitudinal log RMS error, the
magnitude of the W coefficients shows that the surface is attenuated
along the W2 and W3 axes, whereas for vertical and radial log RMS
error, the surfaces appear to be relatively uniform.

To transform the old x's to the new canonical W variables, the
matrix equations given in Table 12 were solved. Once the x to W
relationships and the nature of the response surfaces are known,
optimum operating conditions can be found.

For lateral log RMS error, the coded values are: TM = 0.4, MF =
0.7, PT = 0.1, CO = -0.4, CG = 0.3, with a predicted error of 1.16
or 14.40 feet. For longitudinal log RMS error, the optimum operating
condition results at the coded values: TM = 0,0, MF = 1.0, PT = 0.2,
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€0 = -1.0, CG = -0.5, with a predicted error of 1.30 or 19.79 feet.
For vertical iog BRMS error, an optimum condition occurs at the
points: T™ = 0.1, MF = -0.1, PT = -0.5, CC = -1,2, CG = -1.8, with

a predicted error of 0.96 or 9.12 feet, Finally, for radial log

RMS error, the optimum values are: TM = 0.3, MF = 0.1, PT = .1.0, CO
= 1.0, CG = 0.0, with a predicted error of 1.28 or 18.90 feet.

TABLE 12
X to W Transformation Matrix Equations for the Landing Scenario

Lateral
w1 0.81 0.51 -0.26 0.08 0.09 x1 - 0.U42
We o.M 0.15 Q.uu ~0.86 0.19 x2 ~ 0.65
W3 = =0.14 -0.12 -0.%6 -Q.48 -0.03 x3 - 0.04
Wi 0.10 0.29 0.09 -Q, 1t -0.38 x4 + 0.39
W5 ~0.55 0.83 -0.06 0.05 0.00 x5 - 0.23

Longitudinal

W1 0.72 -0.57 -0.39 0.01 0.068 x1 - 0.68
W2 -0.06 ~0.23 0.21 -0.95 -0.05 x2 - 0.06
W3 = «0.17 0,34 -0.35 -0.z24 -0,27 x3 - 0.21
Wi 0.09 ~0,13 0.20 0.12 -0.96 x4 + 0.41
s 0.67 0.70 0.20 =-0.17 -0.02 x5 + 0.35
Vertical
W1 0.73 -0,33 ~0.U43 -0.37 -0.03 x1 - 0,05
We -0.54 0.16 -0.72 ~0.36 -0.19 x2 + 0.07
W3 = 0.07 =-0,17 -0.39 0.81 ~0.39 x3 + 0.51
Wy 0.05 0.18 -0.37 0.27 0.87 x4 « 1,22
WS 0.42 0.88 -0.05 0.01 -0.23 x5 + 1.89
Radial
W1 0.82 0.54 -0.14 -0.08 0.03 x1 - 0,28
W2 -0.03 0.08 0.63 -0.76 0.15 x2 - 0.15
W3 = =0,09 -0.12 -0.74 -0.64 -0.14 x3 - 0.25
Wi 0.08 0.06 0.20 -0.03 ~0.97 x4 + 0.53
W5 0.56 ~-0.82 0.09 -0.03 0.02 x5 - 0.02

Standard Instrument Departure

For the standard instrument departure scenario, the regression
equations, analysis of variance summaries, and graphie illustrations
are presented in the APPENDIX.

The F-ratios for the SID scenario indicate that the overall
model for each dependent measure except vertical log RMS error was
significant, with R2's of 0.0, 0.38, 0.i7, and 0.38, respectively.



F-tests on the individual coefficients of the four regression
equations indicated that for lateral log RMS error, TM, Mr, PT, CO,
COZ, TMxMF, and MFxPT were significant; for longitudi.l log RMS
error, TM, MF, PT, PTZ,C02, MFxPT, PTxCO, and PTxCG reached
significance; the only significant term for vertical log RMS error
was COZ; while for radial log RMS error, MF, PT, CO, CO<, MFxPT, and
PTxCO were significant.

The partitioned Residual sum-of-squares indicates a reliable
Subjects effect for lateral and vertical log RMS error, meaning the
behavior of at least one of the subjects differed from that of the
rest. The significant Lack-of-Fit term for each model indicates the
equations would better approximate the response surfaces with the
addition of higher-order terms or additional factors, especially in
the case of vertical log RMS error.

The stationary point for each of the four systems is given in
Table 13. The four canonical equations describing the nature of the
response surfaces surrcunding the stationary points are:

log AMSE,lat = 0,99 - 0.06W12 - 0.01W22 + 0.02¥32 + 0,06W4 2 + 0.10WS 2,

log RMSE,lon = 1,29 ~ 0.03W12Z - 0.00W22 + 0.01W32 + 0,05W4 2 + 0.10W5 2.

log RMSE,ver = 1.09 -~ 0.03W12 = 0.01W22 + 0.01W32 + 0,03W4 2 + 0.09W5 2

log BRMSE,rad

1.32 ~ 0.03W1 2+ 0.00W22 + 0.01W32 + 0.04W4 2 + 0.10W5 2,

TABLE 13
Response Surface Stationary Points for the SID Scenario

log RMSE ™ M PT £o £6 X

Lateral -D.49 0.05 1.72 -0.23 0.81 0.99
Longitudinal 0.34 -2.37 0.53 ~0.5U ~1.88 1.29
Vertical -0.33 -0.42 -0.56 =0,20 -0.82 1.09
Radial ~0.96 -0.69 1,46 -0.05 -0.49 1.32

All four systems, upon examination of the signs of the canonicail
coefficients, seem to be saddle-point type surfaces. For lateral,
longitudinal, and vertical log RMS errors, moving along the W1 and W2
axes results in decreases in Y, while moving along the W3, W4, and W5
axes results in increases in Y. For radial log RMS error, decreases
in Y occur when moving along the W1 axis, whereas increases in Y
occur when moving along the W2, W3, W4, and W5 axes. The magnitudes
of the W coefficlents reveal that the surfaces for lateral and radial
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log RMS error are attenuated along the W2 and W3 axes, whereas f{or

longitudinal and vertical log BMS error, attentuation occurs along
the W1, W2, and W3 axes.

The matrix equations relating the old x's to the new W variables
are given in Table 14, Optimum operating conditions, as determined
by the x to W relationships and the canonical equations, are as
follows: for lateral log RMS epror, TM = -1.0, MF = 0.5, PT = -1,0,
€O = 1.0, CG = 0.5, with a predicted error of 0.69 or U.84 feet; for
lengitudinal log RMS error, TM = 0.3, MF = 2.0, PT = 0.5, CO = -0.5,
CG = -1.8, with a predicted error of 1.30 or 19.85 feet; for
vertical log RMS error, TM = 2.0, MF = 2.0, PT = -0.6, CO = -1.0, CG
= -0.8, with a predicted error of 0.89 or 7.78 feet; and finally, for
radial log RMS error, TM = ~-1,0, MF = 2.0, PT = 1.4, CO = -0.1,

CG = - 0.5, with a predicted error of 1.31 or 19.91 feet.

TABLE 14
X to W Transformation Matrix Equations for the SID Scenario

Lateral
W1 -0.69 0.06 ~0,58 0.41 0.00 x1 + 0.49
W2 0.060 0.25 0,18 0.73 0.03 x2 -~ 0.05
W3 = 0.1 =-0.21 0.72 0.54 0.01 X3 - 1,72
Wi C.25 0.17 0.12 -0.02 -0.38 x + 0,23
s =0.24% 0.9C 0.21 ~-0.04 0.18 x5 - 0.81
Longitudinal
W1 ~0.63 -0.15 -0.74 0.08 -0.15 x1 - 0.34
L 0.55 0.55 -0.49 0.29 ~0.28 x2 + 2.37
W3 = <0.43 0.32 0.45 0.51 ~-0.49 x3 ~ 0.53
Wi -0.16 0.29 -0.03 0.44 0.81 x4 + 0.54
W5 -0.30 0.70 0.03 -0.6H4 0.08 x5 + 1.88
Vertical
W1 -0.46 -0.656 .06 -0.57 -0.15 x1 + 0.33
W2 -0.u8 ~0.33 -0.07 0.80 0.1 x2 + 0.42
W3 = 0.74 -0.62 0.04 0.17 -0.19 x3 + 0.56
W c.0e -0.27 -0.05 0.03 0.96 x4 + 0.20
W5 -0.04 0.03 0.99 0.08 0.06 x5 + 0,82
Radial
W1 -0.56 0.62 -0.51 0.21 -0.06 x1 + 0.96
W2 0.64 0.54 0.18 0.48 -0.19 x2 + 0.69
W3 = =0.47 -0.2% 0.50 0.61 -0.29 x3 - 1,46
wu -0.06 0.07 0.16 0.30 0.94 x4 + 0,05
S -0.23 0.50 0.66 -0.51 0.00 x5 + 0,49




DISCUSSION

As seen in the analyses of variances, the relative -importance of
the five manipulated control and display factors varied greatly as a
function of flight task. This result was anticipated, since the
three flight task profiles imposed vastly different control and
attentional demands. The landing and takeoff scenarios consisted of
complex sequences of banks and cruises, ascents and descents,
resulting in the emergence of control order (linear and qQuadratic
components) as the dominant factor. Decreasing the acceleration
component of the control-order fraction resulted in more precise
tracking.

The other major factor in the landing and takeoff scenarios was
the quadratic prediction-time comporient., As seen in the figures
graphically depicting the response surfaces for prediction time, a
U~shaped surface emerges with short and long prediction times
resulting in increases in tracking error., Again the nature of the

light tasks would seem to be the major reason for the shape of the
functions. Short prediction times resulted in overcontrol of the
vehicle when precise tracking was required, while long prediction
times resulted in undercontrol of the vehicle.

The relative insignificance of the other three experimental
factors can be attributed directly to the dominance of control
order. When subjects were presented with a display and contrcl
configuration with pure acceleration (second-order) control,
performance deteriorated such that the levels of the other facters
became unimportant. It is believed that if control order were kept
at a fixed optimum level, the other factors would emerge as
significant. This finding reiterates the need for multifactor
experimentation. The interactions among numerous variables are so
complex that a reductionist study would only give an incomplete and
possibly biased account of the resporse surface.

Results from the standard instrument departure scenario
confirmed the results found in the previous screening study. (Tatro
et al., 1983). All five experimental factors were significant. An
interesting result from this scenario was the fact that the linear
terms of the model accounted for the majority of the variance,
whereas the quadratic components of the regression models emerged
significant in the more complex flight tasks. This would indicate
the need for estimating second-order models in approximating surfaces
for complex tasks, which are the norm for VTOL flight.

All three flight scenarios, upon examination of the fitted
surfaces, revealed optimum operating conditions in approximately the
same variable ranges as seen in Table 5. 1t appears the selection
of the experimental variable ranges and center-point values of the
central composite design provided a good sampling for interpolating
optimum conditions as indicated by the optimum variable ranges and
the minimums of the U-shaped functions for the various factors.
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TABLE 15

Summary of the Optimum Operating Condition Ranges

Across All Three Flight Scenarios

Optimum Optimum
Variab.e Coded Range Transformed Range
Takeoff

Tracking Mode (TM)
Magnification Factor (MF)
Prediction Time (PT)
Control Order (CO)
Control Gain (CG)

longitudinal (1st order)
longitudinal (2nd order)

lateral (1st order)
lateral (Znd order)

vertical (1st order)
vertical (2nd order)
azimuth (1st order)
azimuth (2nd order)

Landing

Tracking Mode (TM)
Magnification Factor (MF)
Prediction Time (PT)
Control Order (CO)
Control Gain (CG)

longitudinal (1st order)
longitudinal (2nd order)

lateral (1st order)
lateral (2nd order)

vertical (1st order)
vertical (2nd order)

azimuth (1st order)
azimuth (2nd order)

-0.8 to 0.2
0.4 to 2.0
1.4 to 2.0

-0.5 to 0.5

-0.3 to 0.9

-0.3 to 0.9

-0.3 to 0.9

~0.3 to 0.9

~0.3 to 0.9

-0-3 t'o 0-9

-0.3 to 0.9

-0.3 to 0.9
0.0 to 0.4

-0.1 to 1.0

-1.0 to 0.2

-1.2 to 1.0

-1.8 to 0.3

-1.8 to 0.3

-1,8 to 0.3

"1.8 to 0;3

-1.8 to 0.3

-108 tO 0.3

-1.8 to 0.3

‘-108 'CO 003

30

50%

75
1.9
1.4

-6200
-108

13350
615

~550
~-29

0.4
0.2

2 to

to
to
to

to
to

to
to

to
to

to
to

to

to
to
to

to
to

to
to

to
to

o
to

53% VRC
125
2.5 sec
1.7

-8900
~-209

18075
818

-1225
=76

1.0
0.5

55% VRC
125
1.7 sec
1.8

-8300
-18¢€

17025
773

=-1075
-65

0.9
0.4



TABLE 15, Continued

Standard Instrument Departure

Tracking Mode (TM) -1.0 to 2.0 38% to 75% VRC
Magnification Factor (MF) 0.5 to 2.u 112 to 125
Prediction Time (PT) -1.0 to 1.0 1.0 to 2.0 sec
Control Order (CO) -1.0 to 1.0 1.4 to 1.8
Control Gain (CG}
longitudinal (1st order) -1.8 to 0.5 ~6200 to -8500
longitudinal (2nd order) -1.8 to 0.5 -108 to =104
lateral (1st order) -1.8 to 0.5 13350 to 17375
lateral (2nd order) -1.8 to 0.5 615 to 788
vertical (1st order) -1.8 to 0.5 ~550 to -1125
vertical (2nd order) -1.8 0 0.5 -29 to -69
azimuth (1st order) -1.8 to 0.5 0.4 to 0.9
azimuth (2nd crder) ~-1.8 to 0.5 0.2 to 0.5

Overall, it appears an optimum operating condition occurs when
tracking mode (TM) = 504 VRC, magnification factor (MF) = 110,
prediction time (PT) = 1.7 seconds, control order (CO) = 1.6, and
control gain (CG) longitudinal first-order = -7630, longitudinal
second-order = -162, lateral first-order = 15858, lateral second-
order = 631, vertical first-order = -908, vertical second-order =
-54, azimuth first-order = 0.7, azimuth second-order = 0.4, all of
which are very close to the CCD center-point conditis ..

Finally, further experimentation should explore a very limited
range surrounding the optimum operating conditions. In this way the
values can be refined to achieve even more precise tracking. In
addition, other flight scenarios should be evaluated because the
rature of the flight task dictates which variables affect performance
critically. Because of the significant Lack-of-Fit found in all but
one of the regression equations, other variables may have to be
screened to assess their importance. It is believed, though, that
the inclusion of a hypothetical time-sharing "factor" in the model
will account for a majority of the still unaccounted for variance.

Indirect evidence from this experiment supports the existence of
such an intervening variable. Although performance data for the
three flight scenarios were not analyzed collectively, it is evident
that, as task complexity increased from the standard instrument
departure to terrain following and landing to the instrument takeoff,
the ranges of scores increased as a function of subject ability
levels. The increasing complexity of the flight tasks called for
increaging time-sharing of attention, and time-sharing ability no
doudbt contributed heavily to the subjrcts' pretest matching scores.




“he multiple-regression prediction zquations for the various
dependent performance measures on the three tdsk scenarios serve as
reasonably comphrehensive models of pilot performance in
represenft.ative vertical and translational flight manauvers. Because
the more complex scenarios for terrain following and landing and for
takeoff impose greater time-sharing demands than the standard
instrument departure, a composite model based on radial tracking
errora for those scenarios would be the indicated choice as a guide
ir. system design. For all variables except prediction time, a single
va' 1e can be selected that falls within the optimum range shown in
Table 15. As in the case of vertical contreol gain, prediction time

should be adjusted automatically with changes in altitude scale
factor.
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TABLE A-1
Summary of the Analysis of Variance for the Regression
Equation of Lateral Log RMS Error in the Takeoff Scenario

log RMSE,lat = 1.06 - (.02TM - 0.03MF - 0.02PT + 0.20C0 + 0.07CG
+ 0,05TM2 + 0,01MF 2 + 0,12PT2 + 0.16C02 + 0.07CG 2 + 0.04TMxMF
- 0.06TMxPT + 0,02TMxXCO + 0.08TMxCG - 0.0TMFxXPT +« O.02MFxCO
- 0.02MFxCG + 0.06PTxCO - 0,10PTxCG - 0.05COXCG.

Mean
Source af Square E

Regression 20 .5921 4,2720%%
™ 1 L0161 .3324
MF 1 .0991 .7153
PT 1 .0348 .2509
co 1 3.8131 27.5124#%%
CG 1 L4197 2.9631
™ 1 2531 1.8254
MF 1 .0072 .0520
PT 1 1.7486 12.6163%%
co 1 2.8480 20.5488#%
CG 1 .5303 3.326Uu%*
TMxMF 1 +0991 L7153
TMxPT 1 .2303 1.6615
TMxCO 1 .0259 .1867
TMxCG 1 . 371 2.6991
MFxPT 1 .2781 2.0067
MFxCO 1 .0186 L1342
MFxCG 1 .0201 . 1452
PTxCO 1 .2361 1.7023
PTxCG 1 .5800 4, 18y7%s
COxCG 1 . 1887 1.3615

Residual 107 ,2763
Sub jects 3 4.,7663 34,389g%#
Lack-of-Fit 6 .2808 2.0260
Replications a8 . 1386

Total 127

¥ p =.,05

¥ p <.01
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EXPERIMENT 1 PREDICTION TIME
LATERAL ERROR

LOC RMSE

VARIABLE LEVEL

Figure A-1, Takeoff Scenario: Lateral log RMSE as
a function of Prediction Time.
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EXPERIMENT 1 CONTROL ORDER
LATERAL ERROR

LOG RMSE

VARIABLE LEVEL

Figure A~2. Tal20ff Scenario: Lateral log RMSE as
a function of Control Order.
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EXPERIMENT 1 CONTROL GAIN
LATERAL ERROR

{.0G RMSE

VARTABLE LEVEL

Figure A-3, Takeoff Scenario: Lateral log RMSE as
a function of Control Gain.
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TABLE A-2
Summary of the Analysis of Variance for the Regression
Equation of Longitudinal Log RMS Error in the Takeoff Scenario

log RMSE,lon = 1.28 - 0.02TM ~ 0.03MF - 0.03”T + G.17C0 + 0.05CG
- 0.01TM2 + 0.06MF2 + 0.05PT2 + 0.14C02 + 0.05CGZ + 0.01TMXMF
- 0.02TMxPT + 0.05TMxCO + 0.07TMxCG ~ 0,01MFxPT + 0,01MFxCO
+ 0.0IMFXCG - 0,03PTxCO - 0.10FPTxCG + 0.01COxCG.

Mean

Source daf Square F

Regression 20 L4182 L,9064%w
™ 1 .0530 .6330
MF 1 . 1007 1.2032
PT 1 .0768 .9176
co 1 2.9123 34.80uc%8
CG 1 .2641 3.1558
™ 1 .0073 .0876
MF 1 .3960 4,7321%
PT 1 2771 3.3120%
co 1 2.3238 27 TTOT**
CG 1 .3340 3.9911%
TMxMF 1 .00u8 .05358
TMxPT 1 .0269 .3219
TMxCO 1 . 1361 1,6261
TMxCG 1 .2961 3.5383#%
MFxPT 1 .0026 .0315
MFXCO 1 .0069 .0826
MEFxCG 1 .0012 L0145
PTxCO 1 .0478 5712
PTxCG 1 05825 6-959”'*
COxCG 1 .0138 . 1649

Residual 107 » 1502
Sub jects 3 1.5808 1£.8921%#
Lack-of=Fit 6 .5223 6.2401%%
Replications 98 .0837

Total 127

*p<.0




LOG RM5E

EXPERIMENT 1 MAGNIFICATION FACTOR
LONGITUDINAL ERROR

Figure A-5.

-3 -2 -1 G .1 +2 +3

VARIABLE LEVEL

Takeoff Scenario: Longitudinal log RMSE as
a function of Magnification Factor.
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EXPSRIMENT 1 PREDICTION TINE
LUNGITUDINAL ERROR

(]
¥
{

LOG Ri4SE

VARIABLE LEVEL

Figure A=6.  Takeoff Scenario: Longitudinal log RMSE as

a function of Praediction Time.
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LOG RMSE

1+

EXPERIMENT 1 CONTROL ORDER
LONGITUOINAL ERROR

Figure A-7,

-3 -2 -1 o +1 ~2 +3

VARIABLE LEVEL

Takeoff Scenario: Longitudinal log RMSE as
a function of Control Order.

42



EXPERIMENT 1 CONTROL GAIN
LONGITUOINAL ERROR

T

LOG RMSE

VARIABLE LEVEL

Figure 4-8. Takeoff Scenario: Longitudinal log RMSE as
a function of Control Gain.
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2-axis

Takeoff Scenario;

Longitudinal RMSE

TMxCG

Flgure A-9, Takeoff Scenario:

Longitudinal log RMSE as

a function of Tracking Mode and Control Gain.




Takeoff Scenario: Longitudinal BMSE PTxCG
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Figure A-10, Takeoff Scenario: Longitudinal log RMSE as .
a function of Prediction Time and Control Gain. =
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TABLE A-3

Summary of the Analysis of Variance for the Regression
Equation of Vertical Log RMS Error in the Takeoff Scenario

log RMSE,ver = 1.19 - 0.02TM + 0.03MF -~ 0.02PT + 0.06CQO + 0.01CG
+ 0.01T2 + 0.02MF2 + 0.02PT2 + 0.10C02 - 0.03CG2 - Q.03TMxMF
+ 0,00TMxPT - 0.01TMxCO + 0.02TMxCG -~ 0.00MFxPT + 0.0 1MFxCC
- 0. 01MFxCG + 0.00PTxCO - G.05PTxCG - 0.04COxXCG.
Mean
Source af Square F
Regression 20 .12d46 3.6327%*
™ 1 .0535 1.5611
MF 1 .0699 2.0393
PT 1 .0397 1.1586
oo} 1 .3300 Q,6250%%
CG 1 .0160 14663
™ 1 .Q032 .0937
MEF 1 .0318 .9264
PT 1 ,0327 L9547
co 1 1.1959 34,8758«
CG 1 .0888 2.5909
TMxMF 1 .0558 1.6271
TMxPT 1 .0005 .0133
TMxCC 1 .0055 . 1592
TMxCG 1 .0175 .5091
MFxPT 1 .0006 .0166
MFxCO 1 .0081 .2356
MFxCG 1 0025 .0718
PTxCO 1 .0000 .G000
PTxCG 1 . 1487 4,3353%
COxCG 1 . 1183 3.4490%
Residual 107 .0636
Sublects 3 .9l59 27 .58u4g%%
Lack-of-Fit 6 .1020 2.9723%%
Replications 98 .0343
Total 127
* p <.05
% p <.01



EXPERIMENT 1 CONTROL OROER
VERTICAL ERROR

LOG RMSE

-3 -2 -1 0 -1 +2

VARIABLE L.EVEL

Figure A-1l. Takeoff Scenario: Vertical log RMSE as
a function of Control Order.
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Takeoff Scenario: Vertical RMSE PTxCG

7-axis

Figure A-12. Takeoff Scenario: Vertical lcg RM3E as
a funciion of Prediction Time and Control Gain.
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Takeoff Scenario:

7-axis

Vertical BMSE COxCG

Figure A~13, Takeoff Scenario:

Vertical log RMSE as

a function of Control Order and Control Gain.
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TABLE A-4
Summnary of the Analysis of Variznce for the Regression
Equation of Radial Log RMS Error in the Takeoff Scenario

Yog RMSE,rad = 1.23 - 0.02TM - Q.01MF - 0,06PT + 0.14CO + 0.0LCG
+ 0,02TMZ &+ 0,03MF 2 + 0.06PTZ + 0.13C0% + 0.03CG2 + 0.01TMxMF
- 0.03TMXPT + 0.01TMxCO + 0.06TMxCG - O.OUMFxPT + 0.01MFxCO
- 0.03MFXCG + 0.01PTXCO - 0.07PTxCG - 0.05C0xCG.

Mean
Source df Square r

Regression 20 .3032 5.34Tynes
™ 1 .0593 1,0460
MF 1 .0161 .2837
PT 1 .1058 1,8647
co 1 1.8345 32.3336%%
G 1 LITHT 3.0786
™ 1 .03 6533
MF 1 L0977 1.7216
PT 1 4210 T.4203%
co 1 1.9705 34,7303%>
CG 1 . 1429 2.5188
TMxME 1 .0079 .1394
TMxPT 1 .0574 1.0120
TMxCO 1 .0100 767
TMxCG 1 .2541 4, u793%
MFxPT 1 L1167 2.0570
MFxCO 1 .0036 L0637
MFxCG 1 .0083 . 1456
PTxCO 1 .0065 L1146
PTx%CG 1 .3590Q 6.3316%
COxCG i .1331 2.3474

nesidual 107 .1193
Subjects 3 1.8098 32.9551%%
Lack-of-Fit 6 2662 4, 6Qugnx
Keplications 98 ,0567

Total 127
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EXPERIMENT | PREDICTION TIME
RADIAL ERRQOR

LOG RMSE

VARIABLE LEVEL

Figure a-14., Takeoff Scenario: Radial log RMSE as a function

of Prediction Time.

e



L0OGC RMSE

B

EXPERIMENT |
RAQIAL &RROR

CCNTRGL OROER

1
-3 -2 -1 c -1 -2 3
VAR ABLE LEVEL
A=l5. Taxeoff Scanario: Radiai log RMSE as a funcrion

of

Control Crdsc.



7-axis

Takeoff Scenario:

Radial RMSE TMxCG

Figure a4~16., Takeoff Scenario:
of Tracking Mode and Control Gain.

Radial log RMSE as a function




Takeoff Scenario;

2-3X15

Fadial RMSE FTxCG

Figure a-17. Takeoff Scenario:

Radial lo. RMSE as a function

of Prediction Time and Control Gain.




TABLE A-5
Summary of the Analysis of Variance for the Regression
Equation of Lateral Log RMS Error in the Landing Scenario

log RMSE,lat = 1.21 + 0.01TM - 0.06MF - 0,01PT + 0.14CO + 0.01CG
- 0.02TM% + 0.04MF 2 + 0.02PT2 + 0.13C02 - 0.02CG2 - 0.01TMxMF
+ 0.01TMxPT - 0.03TMXCO + 0.01TMxCG + 0.02MFxPT - 0.0UMFxCO
- 0.01MFxCG + 0.01PTxCO - 0.00PTXCG - 0.00COXCG.

Mean

Source dar Square F

Regression 20 .2360 4,9043%%
™ 1 .0119 L2473
MF 1 3275 6.8041%
PT 1 .0210 L4358
Cco 1 1.7671 36.7169%#
CG 1 .0098 L2041
™ 1 .0556 1.1563
MF 1 L1677 3.4853
PT 1 .0683 1.4195 .
cc 1 1.8511 8. Ug1o%x
cG 1 L0537 1.1168
TMxMF 1 .0123 .2564
THMxPT 1 0141 .2924
TMxCO 1 .0633 1.3155
TMxCG 1 .0098 .2042
MEXPT 1 .0193 .Loo7
MFxCO . 1 .0948 1.9695
MFxCG 1 .0020 .Qu23
PTxCO 1 .0091 ‘.1900
PTxCGC 1 .0000 .0v00
nOxCG 1 .0000 .0000

Residual 107 L4514
Sub jects 3 2.5759 53.5209%#%
Lagk-of~Fit 6 .5183 10.7687%%
Replications 98 L0481

Total 127

¥ p <.05

** p =<.01
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EXPERIMENT 2 MAGNIFICATION FACTGOR
LATERAL ERROR

LDG RMSE

VARIABLE LEVEL

Figure A-18. Landing Stenario: Lateral log RMSE as a fuaction
of Magnificacion Factor.



EXPERIMENT 2 CONTROL ORDER
LATERAL ERROR
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VARIABLE LEVEL

Figure A-19. Landing Scenario: Lateral log RMSE as a function
of Concrol Order.
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TABLE A-%
Summary of the Analvsis of Variance for Lhe Regression
Zquation of Longitudinal Log RMS Error in the Landing Scenario

log RMSE,lon = 1.35 + 0,01TM + 0.01MF - 0.02PT + 0.0820 + 0.00CG
-~ 0.03TM2 + 0,03MF2 + 0,04PT2 + 0,39C02 - 0.03CG2 - 0.01TMxMF
+ 0.03TMxPT - 0.02TMxCO ~ O.QUTMXCG + 0.02MFxPT + O.00MFxCO
+ 0.02MFxCG + 0.04PTXCO + 0.00PTXCG + 0.00COXCG.

Mean

Source af Square g

Segression 20 . 1235 3.04L%s
™ 1 L0161 3974
MF 1 .0021 L0511
PT 1 .034u .8uB88
Cco 1 .5549 13.9263%%
CG 1 .0004 .0099
™ 1 L1124 2.7707
MF 1 +1300 3.2062
PT 1 .1533 3.7801%
co 1 .8582 21.1697%#
CG 1 . 1207 2.9758
TMxMEF 1 .0015 .0365
TMxPT 1 L0574 1.4142
TMxCO 1 .03564 .8971
TMxCG 1 .0927 2,2859
MExPT 1 .0154 L3791
MFxCQ 1 .0000 .0008
MFxCG 1 .0378 9327
PTxCO 1 L1161 2.8626
PTxCG 1 .0000 .0000
COxCG 1 .0Q00 0001

Residual 107 .1192
Sub jects 3 2.5256 62.2670%#
Lack-of-Fit 6 .2002 4,93514%
Replications 98 .0U06

Total 127

*p=<.0%
o5 <.010



EXPERIMENT 2 PREDICTION TIME
LONGI TUDINAL ERROR

~_ -

LDOG RMSE

VARIABLE LEVEL

Figure A-20. Laanding Scenario: Longitudinal log RMSE as a
function of Prediction Time.



LOG RMSE

EXPERIMENT 2 CONTROL ORDER
LONGITUQ INAL ERROR

-—

Figure A-21,

VARIABLE LEVEL

Landing Scenario: Longitudinal log RMSE as a
function of Control Order.
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TABLE A-T7
Summary of %the Analysis of Variance for the Regression
Equation of Vertical Log RMS Error in the Landing Scenario

10g RMSE,ver = 0.93 - 0.02TM + 0.01MF + 0.03PT + 0.06C0 - 0.03CC
- 0.00TM2 + 0.0IMF2 « 0.03PT2 + 0.05C02 - 3.00CG2 + 0.03TMXMF
- 0.01TMXPT - 0.01TMxCO - 0.01TMXCG + 0.00MFXPT - 0.01MFxCO
+ 0.0IMFXCG - 0.02PTxCO + 0,01PTxCG - 0.02C0xCG.

Mean

Source 4ac Square F

Regression 20 .05383 2.2863%
™ 1 .ouuy 1,738¢9
MF 1 .00us L1814
PT 1 .0900 3.5223%
co 1 .3508 13.7320%#
cG 1 L0763 2.9882
™ 1 .00Mm .Q051
MF 1 L0137 .5358
PT 1 .1 14g 4,4988%
Co 3 2567 10.166T%%
CG 1 L0004 0154
TMxMF 1 07032 2.7508
TMxPT 1 o111 L4326
T™MxCO 1 .0012 0456
TMxCG 1 .0026 .1013
MFxPT 1 . 0004 D147
MF xCO 1 .0138 _ 5416
MFxCG 1 .0102 4003
PTxCO 1 .023% .9209
PTxCG 1 .0080 3137
COxCG 1 0344 1,.3490

Resicual 107 L0428
Subjects 3 .6202 24,2812%%
Lack-of-Fit ) .0357 1.4000
Replications 98 .0255

Total 127

*pr <.05

** p < .01
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Landing Scenaric: Vertical log RMSE as a
function of Prediction Time.
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Figure A-23, Landing Scenario: Vertical log RMSE as a
function of Control Order.

we-

arx



TABLE A-8
Summary of the Analysis of Variance for the Regression
Equation of Radial Log RMS Error in the Landing Scenario

log RMSE,rad = 1,43 + 0,00TM - .03MF - 0,01PT + 0,11CO + 0.00CG
- 0.03TMZ + 0.03MF 2 + 0.03PT* + 0.10C0% = 0.03CC% + 0.00THMXMF
+ 0.01TMxPT = 0.02TMxCO - 0.01TMXCG + 0.01MFXPT - O,03MFxCO
+ 0.01MFxCG + 0.03PTxCO - 0.00PTXCG ~ 0.00COxCG.

Mean

Sourege 4af Square F

Regression 20 . 1553 5.8977%*
™ 1 .0000 201
MF 1 L0711 z., 001
PT 1 .0035 134y
co 1 1.1578 43,9575%%
CG 1 .0004 ,0163
™ 1 . 1015 3.8527%
MF 1 L1181 4, 482u%
PT 1 .0910 3.4536%
o 1 1.1911 15 ,2202%#
CG 1 .0807 3.0628
THxMF 1 . 0003 0317
TMxPT T .0125 LT3
TMxCO 1 .0361 1.3688
TMxCG 1 .0101 . 384y
MFxPT ) .0118 L4480
MFxCO . 0400 1.5167
MFxCG 1 ., 0049 . 185U
PTxCO 1 .oLug0 1.6723
PTxCG 1 .0001 .0041
COxCO 1 .0002 .0082

Regidual 107 L0364
Sub jects 3 2.0893 79,3227
Lack-0of-Fit 6 L2440 q.26UTER
Replications 98 .0263

Total 127
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Landing Sc nario: Radial log RMSE as a
function ¢ Tracking Mode.
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Figure A-25, Landing Scenaric: Radial log RMSE as a
function of Prediction Time.
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Figure A-26., Landing Scenario: Radial log RMSE as a
function of Control Order,



TABLE A-Q
Summary of the Aralysis of Variance for the Regression
Equation of Lateral Log RMS Error in the SID Scenario

log RMSE,lat = 1,08 + 0.04TM - Q.OTMF - 0,08PT + 0.08CO + 0.02CG
~ 0.01TM2 + 0.0IMFZ + 0.02PTZ + 0.10C02 - 0.01CG= + 0.08TMxMF
- 0.02TMxPT + 0.02TMxCO - 0.03TMxCG + 0.06MFxPT - 0.01MFxCO
+ 0.0IMFXCG + 0.00PTxCO + 0.01PTxCG - 0.04COxCG.

Mean

Source daf Square F

Fagression 20 .2098 3.9407%*
™ 1 .1876 3.5804%
M 1 .5319 10.1508%#
PT 1 .68uy 13.0614%%
co 1 .6096 11.6332%%
cG 1 .C304 .5799
™ 1 0112 L2144
MF 1 01 L2114
T 1 ,Qu87 .3294
co 1 1,0947 20.8T7qux=
CG 1 .00L6 .0884
TMyMF 1 L4512 3.6097%*
TMxFT 1 0157 .2994
TMxCO 1 .0270 .5148
TxCG 1 .068¢ 1.2975
MFxPT 1 L2421 L. o0195*
MFxCO 1 L0119 .2267
MFxCG 1 .00238 .0526
PTxCO 1 . 0007 0142
PTxCG 1 .0015 .0286
COxCG 1 .0867 1.6546

Residual 107 .0626
Sub jects 3 . 1086 2.0725
Lack-of-Fit 6 L2007 3.9UyT7wx
Replications o8 .0s524

Total 127

*x %
tsto

s
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Figure A-27. SID Scenaric: Lateral log RMSE as a function

of Tracking Mode.
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EXPERIMENT 3 MAGNIFICATION FACTOR

LATERAL ERROR
3 T
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VARIABLE LEVEL

Figure A~28, SID Scenario: Lateral log RMSE as a function
of Magnification Factor.
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Figure A-29. SIC Scenario: Lateral log RMSL as a function
of Prediction Time.
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Figure A-30, SID Scenario: Lateral log RMSE as a function

of Control QOrder.
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Figure A-31. SID Scenario:

Lateral log RMSE as a function

of Tracking Mode and Magnification Factor.
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SID Scenarig: Lateral RMSE  MFxPT

2-axis

Figure A-32., SID Scenario: Lateral log RMSE as a function
of Magnification and Prediction Time.
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TABLE A-10 -
Summary of the Analysis of Variance for the Regression -
Equation of Longitudinal Log RMS Error in the SID Scenario

log RMSE,lon = 1,14 + 9,05TM - Q.06MF - 0,04PT + 0.01CO + 0.02CG
~ 0.06TM2 + 0,01MF2 « 0.03PT2 + 0.08C02 + 0.02CG2 + 0.0UTMxMF —
- 0.00TMxPT - 0.02TMxCO - 0.02TMxCG + 0.05MFxPT - 0.03MFxCO i
- 0.02MFXCG - 0.06PTxCO - 0.05PTxCG - 0.02C0xCG. :

Mean
Source daft Square F
Regression 20 . 1256 3.5182%%
T™ ] L2017 5.6500% K
MF 1 .3838 10.7526%* -
PT 1 L1643 4,6043%
CO 1 .0073 . 2059
CG 1 L0470 1.3166
™ 1 0013 .0378
MF 1 .0032 .0900 )
PT 1 R Bcion 2.0655% -
co 1 Linoe T oLl ~
CG 1 .0354 .3609
TMxMF 1 L0803 2.2554
TMxPT 1 .0000 L0011y
TMxCO 1 .0359 1.0061
TMxCG 1 .0193 .5304 .
MFxPT 1 . 158k 4,4381% '
MFxCO 1 .0Ls8 1,2631
MFxCG 1 .0218 6116
PTxCO 1 . 1951 S.UeTU*
PTxCG i .1606 L,y986%
COxCG 1 .0280 1.0924
Residual 107 L0402 ;
Sub jects 3 Ou16 1,1879
Lack-of-Fit 6 L1122 3.1429%%
Replications 98 .0357
Total 127 .
* p .,
oy < 00
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Figure A-33. §ID Scenario: Longitudinal log RMSE as a function
of Tracking Mode.
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SID Scenario: Longitudinal log RMSE #s a function
of Magnification Factor.
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Figure A=358. SID Scenario: Longitudinal log RMSE as a function
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Figure a-3%, SID Scenario: Uongitudinal luvg RMCL as a function

of Prediction Time and Control Gain.




TABLE A-11
Summary of the Analvsis of Variance for the Regression
Equation of Vertical Log RMS Error in the SID Scenario

10g RMSE,ver = 1.10 - 0.02TM + 0.0IMF - 0.07PT + 0.00CO + 0.02CG
+ 0.00TMZ & 2.0WMF2 = 0.01PT2 + 0.08002 + 0.01CG2 = .OQUTMxMF
+ 0.01TMxPT - 0.03TMxCG ~ 0.00TMXxCG + 0.02MFxPT - 0.02MFxCO
+ 0.00MFXCG - 0.04PTXCO + 0.00PTXCG + 0.01C0xCGC.

Mean

Source dfr Square 3

Regression 20 .0686 1.3251
™ 1 .0547 1.0601
MF 1 L0077 1486
PT 1 .0101 , 1954
CH 1 .0003 .0052
CG 1 .0339 .6567
™ 1 .0002 L0ou
Mg 1 L0241 LU662
PT 1 .026¢ .5035
Cco 1 .3003 15.50565%%
CG 1 .0123 .2385
TMxMF 1 122 2.3654
TMxPT 1 .0021 Louty
TMxCC 1 .0658 1.2746
TMxCG 1 .0N09 .0183
MFxPT 1 .0u21 .8162
MFxCC 1 .0222 L4301
MFxCG 1 .0001 .0012
PTxCC 1 .0923 1.7875
PTxCG 1 .0002 .0039
COxCG 1 .0059 L1143

Residual 107 L0714
Sub jects 3 L3047 7.0651%%
Lack-of-Fit 6 .2L86 4,8178%#
Replications -98 .0516

Total 127

*p =£.05

%% E :;‘O‘]
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Figur~ 4-40, SID Scenario: Vertical log RMSE as a function
ot Control Order.



TABLE A-12 -
Summary of the Analysis of Variance for the Regression T
Equation of Radial Log EMS Error in the SID Scanario

log RMSE,~ad = 1.32 + 0.02TM - G.OSMF - 0.05PT + 0.04CO + 0.02CG
~ 0.00TMZ + 0.00MF2 + 0.02PT2 + 0.09C02 + 0.02CG2 + 0.03TMxMF —
- 0.01TMxPT - 0.01TMxCO ~ 0.02TMxCG + O.0RMFXPT - 0.02MFxCO oE
- G.QIMFXCU - 0.04PTXCO ~ 0.02PTxCG - 0.01C0xCG. -

Mean

Source zaf Sguare r

Regression 20 L1122 4,0215%%
™ 1 .0u80 1.7229 e
MF 1 Lou1 8.650G%% =t
PT 1 L2NTh 7.8025%¢
co 1 . 1348 4,8358%
CG 1 L0577 2.0693
™ 1 .0008 .0275
MF 1 .0003 L0121 .
PT 1 L0516 1.8527 —
Cco 1 .0598 34,7G98%4 -
CG 1 L0310 1.1126
TMxMF 1 .0725 2.6008 o
TMXPT 1 .0033 .2980 O
TMxCO 1 .0065 L2347
THMxCG 1 L0367 1.3176 -
MFxPT 1 .2008 T.2056%% -
MFxCO 1 .0227 8141
MFxCG 1 .0018 .0029
PTxCO 1 .0968 3.4733%
PTxCG 1 L0384 1.3763
COxCG 1 .0068 L2437

Residual 107 .0354
Subjects 3 .02u8 .8900
Lack=of-Fit £ 1640 5.8817%*
Replications 98 L0279

Total 127
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Figure A-4l, 1D Scenario: Radial log RMSE as a function
of Magnification Factor.
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Figure A-42. SID Scenario: Radial log RMSE as a function
of Prediction Time.
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Figure 4~43. SID Scenmario: Radial log RMSE as a function
of Control Order.
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Figure A-44, SID Scenario: Radial log RMSE as a function
of Magnification Factor and Prediction Time.
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